Correction to: Intra-arterial Stem Cell Therapy Diminishes Inflammasome Activation After Ischemic Stroke: a Possible Role of Acid Sensing Ion Channel 1a
نویسندگان
چکیده
منابع مشابه
Stem cell therapy in ischemic stroke: role of IV and intra-arterial therapy.
OBJECTIVE Cell-based therapies are being investigated as an adjunct to IV thrombolysis or mechanical thrombectomy in ischemic stroke. This review summarizes the potential applications as well as challenges of intravascular cell delivery in ischemic stroke. METHOD We conducted a search of Medline as well as the clinicaltrials.gov Web site for all ongoing human clinical studies using stem cells...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملThe impact of arterial collateralization on outcome after intra-arterial therapy for acute ischemic stroke.
BACKGROUND AND PURPOSE Although intra-arterial therapy for acute ischemic stroke is associated with superior recanalization rates, improved clinical outcomes are inconsistently observed following successful recanalization. There is emerging concern that unfavorable arterial collateralization, though unproven, predetermines poor outcome. We hypothesized that poor leptomeningeal collateralization...
متن کاملPt718. Histamine Selectively Potentiates Acid-sensing Ion Channel 1a
Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine select...
متن کاملPotent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a.
Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Molecular Neuroscience
سال: 2021
ISSN: 0895-8696,1559-1166
DOI: 10.1007/s12031-020-01731-4